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1 Introduction

This report considers how the model PDEs in RELAP-7 can be amended to account for the
presence of non-condensable gases (NCGs) in the flow system. Let the number of NCGs
be denoted by NNCG. The primary (and condensable) vapor, e.g., steam, will be referred
to as the “primary vapor” and will have the subscript “v, 0”, and the other constituents are
assumed to be non-condensable and will be referred to as “NCGs” and will use the sub-
script “v, i”, with i = 1, . . . , NNCG. Mixture quantities will use the subscript “v” (without
any numeric index).

Before distinguishing between condensable and non-condensable gases, the mixture
equations are derived generally; there the mixture components are just referred to as
“species” and will just have a subscript “i” instead of the corresponding vapor subscript
“v, i”. The total number of species is denoted by Nspecies.

This report is organized as follows: Section 2 discusses mixture models, Section 3
discusses the governing equations for transport of the mixture species, and Section 4 gives
the system of equations to be used for the inclusion of NCGs.
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2 Mixture Models

State-of-the-art mixture models are formulated as functions of the dimensionless Helmholtz
free energy

φ(δ, τ, ψ) = φo(δ, τ, ψ) + φr(δ, τ, ψ) , (1)

where the reducing parameters of the reduced density δ = ρ/ρc(ψ) and the inverse reduced
temperature τ = Tc(ψ)/T are composition-dependent functions, φo is the ideal-gas part
of the mixture, and φr is the residual part of the non-ideal mixture. The ideal and residual
parts are commonly written as

φo(ρ, T, ψ) =

Nspecies∑
i=1

ψi[φ
o
oi(ρ, T ) + lnψi] , (2)

φr(δ, τ, ψ) =

Nspecies∑
i=1

ψiφ
r
oi(δ, τ) + ∆φr(δ, τ, ψ) . (3)

In Eqs. (2) and (3), the subscript o indicates the pure component equation of state, and ∆φr

is the empirical departure function that describes the difference in the residual Helmholtz
free energy of the mixture with regard to that obtained from the linear combination of
the residual Helmholtz free energies of the pure components. The state-of-the-art mix-
ture model requires the reduced Helmholtz free energies of the pure components along
with continuous first, second, and third derivatives. The calculation of phase equilibria
and inverse functions is especially computationally expensive, and convergence cannot
be guaranteed. For these reasons, simplified mixture models are often used in extensive
process simulations. The resulting inaccuracies in the calculated fluid properties must be
accepted.

In this section, two different models, A and B, for the ideal mixing of non-ideal gases
are discussed. These models will turn out to be equivalent for ideal-gas mixtures but lead to
different results when applied to non-ideal gases. These differences, along with potential
pitfalls and possible enhancements, are discussed.

2.1 Mixture Model A - Components Under Partial Pressures

For this model it is assumed that all of the Nspecies components are under their partial
pressures pi and possess the entire volume V of the mixture as illustrated in Figure 1.

8



Figure 1. Illustration of model A – Components under partial
pressures possess mixture volume

The partial pressures pi are defined in terms of the molar fractions ψi as

pi = ψi p , (4)

where the molar fraction ψi is calculated from

ψi =
ni
n
, (5)

with

n =

Nspecies∑
i=1

ni . (6)

The symbol n refers to the amount of substance (number of moles). The mass fraction ξi
of each component is defined as

ξi =
mi

m
, (7)

where the mass of the mixture m is

m =

Nspecies∑
i=1

mi . (8)

The molar mass M of the mixture is computed from

M =

Nspecies∑
i=1

(ψiMi) , (9)

or from
M =

1
Nspecies∑
i=1

ξi
Mi

. (10)
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The mass fraction ξi can be obtained from the molar fraction using

ξi =
Mi

M
ψi . (11)

2.1.1 Calculation of density

If the molar fraction equals the volume fraction, the density ρ = m/V can be written as

ρ =

Nspecies∑
i=1

mi

V
=

Nspecies∑
i=1

ρi(pi, T ) . (12)

Eq. (12) with the partial densities computed form partial pressures only holds for ideal gas
mixtures, where

ρ =

Nspecies∑
i=1

ρi(pi, T ) =

Nspecies∑
i=1

piMi

R̄T
=

p

R̄T

Nspecies∑
i=1

ψiMi =
pM

R̄T
. (13)

Eqs. (4) and (13) are known as Dalton’s law, which only applies to ideal-gas mixtures as
shown in Section 2.4. For non-ideal components, Eq. (12) should not be used. The use of
Eq. (15) is recommended instead.

2.1.2 Calculation of mass-specific properties

All mass-specific properties z, including specific volume, should be calculated from

z =

Nspecies∑
i=1

Zi
m

=

Nspecies∑
i=1

mizi(pi, T )

m
=

Nspecies∑
i=1

ξizi(pi, T ) . (14)

For specific volume, Eq. (14) yields

v =

Nspecies∑
i=1

Vi
m

=

Nspecies∑
i=1

mivi(pi, T )

m
=

Nspecies∑
i=1

ξivi(pi, T ) . (15)

For the ideal-gas mixture, this is consistent with Eqs. (12) and (13) since

v =

Nspecies∑
i=1

ξivi(pi, T ) =

Nspecies∑
i=1

ξi
R̄, T

piMi

=
R̄, T

pM
. (16)
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This equation is more suitable for ideal mixtures of real gases since thermodynamic
consistency of the mass-specific properties can be assured. For the specific entropy it must
be noted that the entropy of mixing is already included when using Eq. (14).

2.1.3 Calculation of transport properties

All transport properties z, such as dynamic viscosity and thermal conductivity, should be
calculated from

z =

Nspecies∑
i=1

ψizi(pi, T ) . (17)

The volume fraction is approximated with the molar fraction, and it is assumed that the
transport properties of the mixture depend on that volume fraction and the pure component
transport properties only.

2.2 Mixture Model B - Components Possess Partial Volumes

For this model it is assumed that all of the Nspecies components are under the pressure of
the mixture p and reside in a fraction of the total volume as illustrated in Figure 2.

Figure 2. Illustration of model B – Components under pressure
of the mixture possess partial volumes

The partial volumes Vi are defined using the molar fractions ψi as

Vi = ψi V , (18)
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where the molar fraction ψi is calculated from Eq. (5) or, for given mass fractions, from

ψi =
M

Mi

ξi , (19)

with the molar mass M of the mixture computed from Eq. (10).

2.2.1 Calculation of density

The specific volume of the mixture is defined as

v(p, T ) =
V

m
=

Nspecies∑
i=1

mivi(p, T )

m
=

Nspecies∑
i=1

ξivi(p, T ) . (20)

The density is ρ = 1/v. It must be noted that the specific volume v of component i must
not be confused with the partial specific volume, i.e., the inverse of the partial density
in model A (see Eq. (12)). For model B, the partial volume of component i must be
calculated from

vi =
v

ξi
, (21)

which is in agreement with the definition of the mass-fraction in Eq. (7).

2.2.2 Calculation of mass-specific properties

All mass-specific properties z, including specific volume, are calculated from

z(p, T ) =

Nspecies∑
i=1

Zi
m

=

Nspecies∑
i=1

mizi(p, T )

m
=

Nspecies∑
i=1

ξizi(p, T ) . (22)

For the ideal-gas mixture, Eq. (20) is equal to Eq. (16) since

v(p, T ) =

Nspecies∑
i=1

ξivi (p, T ) =

Nspecies∑
i=1

ξi
R̄T

pMi

=

Nspecies∑
i=1

ψi
R̄T

pM
=
R̄T

pM
. (23)
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Eq. (22) assures thermodynamic consistency of the mass-specific properties for the ideal
mixing of real gases. For the specific entropy s, the entropy of mixing must be added when
using Eq. (22), so that

s(p, T ) =

Nspecies∑
i=1

ξis(p, T )−
Nspecies∑
i=1

ψi lnψi , (24)

where R is the specific gas constant of the mixture R = R̄/M , where R̄ is the universal
gas constant, which has a value of 8.3144598 J/(mol-K).

2.2.3 Calculation of transport properties

All transport properties z, such as dynamic viscosity and thermal conductivity, should be
calculated from

z (p, T ) =

Nspecies∑
i=1

ψizi(p, T ) . (25)

The volume fraction is approximated with the molar fraction and it is assumed that the
transport properties of the mixture depend on that volume fraction and the pure component
transport properties only.

2.2.4 Calculations from given specific volume and internal energy

The independent variables of the mixture model, pressure p and temperature T , are calcu-
lated by iteration from

[
p(v, e, ξ)
T (v, e, ξ)

]
=

[
p
T

]
:


v =

Nspecies∑
i=1

ξivi(p, T )

e =
Nspecies∑
i=1

ξiei(p, T )

. (26)
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2.3 Calculation of Heat Capacities and Speed of Sound from Ther-
modynamic Derivatives

For both models A and B, the heat capacities and speed of sound must be calculated
according to their definitions from thermodynamic derivatives:

cp =

(
∂h

∂T

)
p

, (27)

cv =

(
∂e

∂T

)
v

, (28)

c = v

√
−
(
∂p

∂v

)
s

. (29)

Since the independent parameters of the mixture model are p and T , the derivatives must
be calculated from the following equations:

(
∂e

∂T

)
v

=

(
∂e

∂T

)
p

−
(
∂e

∂p

)
T

(
∂v

∂T

)
p(

∂v

∂p

)
T

, (30)

(
∂p

∂v

)
s

=


(
∂v

∂p

)
T

−
(
∂v

∂T

)
p

(
∂s

∂p

)
T(

∂s

∂T

)
p


−1

. (31)

2.4 Discussion

2.4.1 Equivalence of model A and B for ideal gases

For ideal gases, the mixture models A and B are equivalent. This can easily be derived
from the ideal-gas equation

p = ρ
R̄T

M
, (32)
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where R̄ is the universal gas constant. According to Eq. (32), the partial density of com-
ponent i as an ideal gas reads

ρAi =
mi

V
= pi

Mi

R̄T
, (33)

for model A. Eq. (12), in conjunction with Eqs. (4) and (9), gives the density of the
mixture:

ρA =

Nspecies∑
i=1

(
pi

Mi

R̄T

)
=

Nspecies∑
i=1

(piMi)

R̄T
=

p

Nspecies∑
i=1

(ψiMi)

R̄T
=
pM

R̄T
. (34)

For model B, the (molecular) density of the ideal gas for component i is

ρBi =
mi

Vi
=

mi

ψiV
=
ρAi
ψi

= p
Mi

R̄T
, (35)

and, according to Eq. (20), the density of the mixture is

ρB =
1

Nspecies∑
i=1

(
ξi

ρi (p, T )

) =
1

Nspecies∑
i=1

ξi

(
R̄T

pMi

) =
1

R̄T

p

Nspecies∑
i=1

(
ξi
Mi

) , (36)

which finally gives

ρB =
1

R̄T

p

Nspecies∑
i=1

(
ψi
M

) =
pM

R̄T
. (37)

The equivalence of the models in terms of the resulting mixture density can be seen in Eqs.
(34) and (37).

2.4.2 Inconsistency in model A for non-ideal gases

For real gases, the models A and B are not equivalent. It can be shown that model A
implies an inconsistency when it is applied to real fluids. The pressure p as a function of
density ρ and temperature T is calculated from a Helmholtz free energy explicit equation
of state from

p = ρ
R̄

M
T (1 + δ φr

δ) , (38)
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where δ = ρ/ρc is the reduced density, τ = Tc/T is the inverse reduced temperature, and
φ = f/

(
R̄T
)

is the dimensionless Helmholtz free energy. The superscript r denotes the
residual part, the subscript δ denotes the first derivative with respect to the reduced density,
and the subscript c denotes the critical point. For consistency, the definition of the mass
fraction given in Eq. (7) must lead to Eq. (10). For a binary mixture with the components
I and II, Eq. (7) can be rewritten as

ξI =
ρI

ρ
=

ρI

ρI + ρII

. (39)

For simplicity, Eq. (38) is rewritten for the partial density as a function of partial pressure
and temperature

ρi =
piMi

R̄T

1

(1 + δ φr
δ)

=
piMi

R̄T
Xi . (40)

Inserting Eq. (40) in Eq. (39) gives

ξI =
pIMIXI

pIMIXI + pIIMIIXII

. (41)

Using Eq. (4) with Eq. (41) yields to

ξI =
ψIMI

ψIMI + ψIIMII + ψIIMII

(
XII

XI

− 1

) =
ψIMI

M + ψIIMII

(
XII

XI

− 1

) . (42)

Eq. (42) only agrees with Eq. (7) if XI/XII = 1. This condition is only fulfilled for ideal
gases. Similarly, only the density of ideal-gas mixtures can be calculated with Eq. (12).
For non-ideal gases the definition of the partial pressures does not lead to volume fractions
that are equal to the molar fractions.
For model A, the following relation is assumed:

V = mv (p, T,ψ) = mivi (pi, T ) . (43)

It can be shown that Eq. (43) is always fulfilled for ideal-gas mixtures since

V = m
R̄T

pM
= mi

R̄T

piMi

. (44)

is fulfilled with Eqs. (4), (7), and (11). For non-ideal gases this will not be the case.

Mixture model A is used by TRACE, where the components are considered to be
ideal gases. For mixing non-ideal gases, model A is not fully consistent. Therefore, the
application of this model is not planned for RELAP-7.
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2.4.3 Potential pitfall of model B

The fluid properties of the individual components of model B are evaluated at the pressure
of the mixture. For mixtures with condensable components, this restricts the applicability
of model B to temperatures above the highest saturation temperature in the considered
pressure domain. For example, humid air is a mixture of water vapor and non-condensable
gases. At ambient conditions, the water vapor properties of the unsaturated humid air
need to be calculated at conditions, where pure water would be liquid. In this case, the
lowest temperature where model B is applicable would be Ts (p = 0.1 MPa) ≈ 373 K.
An extrapolation into the metastable vapor phase would allow for a minimum temperature
Tmin (p = 0.1 MPa) ≈ 326 K at the vapor spinodal.
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3 Species Equations

Assuming that each species can have its own velocity, the 1-D mass conservation equation
for species i is as follows:

∂ξiρ

∂t
+
∂ξiρui
∂x

= Si , (45)

where Si is the volumetric mass source of the species, if any.

Let the mixture velocity be defined as follows:

u ≡
Nspecies∑
i=1

ξiui . (46)

Summing Equation (45) over all species gives

∂ρ

∂t
+
∂ρu

∂x
=

Nspecies∑
i=1

Si , (47)

which looks identical to the single-vapor mass conservation equation. However, it is un-
desirable to track velocities for each species, so now we attempt to eliminate ui. First we
define the diffusion velocity for each species:

ûi ≡ ui − u . (48)

Inserting this definition into Equation (45) gives

∂ξiρ

∂t
+
∂ξiρ(ûi + u)

∂x
= Si . (49)

Defining a diffusive flux,
Ji ≡ ξiρûi , (50)

this equation becomes
∂ξiρ

∂t
+
∂ξiρu

∂x
= Si −

∂Ji
∂x

. (51)

Note that at this point, no approximations have been made yet. Now we make the approx-
imation; the diffusive flux is approximated using Fick’s first law:

Ji ≈ −ρDi
∂ξi
∂x

. (52)
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However, it is important to note that now, summing Equation (51) gives

∂ρ

∂t
+
∂ρu

∂x
=

Nspecies∑
i=1

Si −
Nspecies∑
i=1

∂Ji
∂x

, (53)

which is only equivalent to the single-vapor equations if the sum of the diffusive fluxes is
zero:

Nspecies∑
i=1

∂Ji
∂x

= 0 . (54)

Taking the gradient of Equation (52) and using the partition-of-unity property of the mass
fractions, one can see that one trivial solution for this condition is that all species have
the same diffusion coefficient. Otherwise, if one assumes this condition is met and thus
uses Equation (47), along with Equation (51) for all species excluding species i, then the
following is required to ensure consistency:

∂Ji
∂x

= −
Nspecies∑
j 6=i

∂Jj
∂x

. (55)

Bringing the sum inside the derivative on the right side and then integrating (which does
make the condition more strict but is still useful for this analysis) gives the following
definition for the diffusion coefficient for species i:

Di =

−
Nspecies∑
j 6=i

Dj
∂ξj
∂x

∂ξi
∂x

. (56)

Note that if the vapor mixture equation is used along with Nspecies − 1 species equations,
with Equation (54) assumed to be satisfied, then one does not actually need to use Equation
(56); it is used implicitly. For a binary mixture (Nspecies = 2), this simply reduces to
D1 = D2.
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4 Vapor Mixture Equations

Recall the vapor equations for the seven-equation model, without any NCGs:

∂αvρvA

∂t
+
∂αvρvuvA

∂x
= SvA , (57)

∂αvρvuvA

∂t
+
∂αv(ρvu

2
v + pv)A

∂x
= pintA

∂αv
∂x

+ pvαv
∂A

∂x
+ FvA , (58)

∂αvρvEvA

∂t
+
∂αvuv(ρvEv + pv)A

∂x
= pintuintA

∂αv
∂x

+QvA , (59)

where the source terms are the following:

SvA ≡ S int
v A+ Swall

v A , (60)

S int
v A ≡ Γint

`→vaintA , (61)

Swall
v A ≡ Γwall

`→vPhf , (62)

FvA ≡ λ(u` − uv)A− F friction
wall,v A− F friction

int,`→vA

+ αvρvAgx +
(
S int
v + Swall

v

)
uintA , (63)

QvA ≡ p̄intµ(p` − pv)A+ ūintλ(u` − uv)A
− F friction

wall,v uvA− F friction
int,`→vuintA

+ αvρvuvAgx +Qint
v aintA+ (qwall

v + qwall,boil
` )Phf

+ S int
v

(
H int
v −

pint

ρint

)
A+ Swall

v H`A . (64)

Now the presence of NCGs is considered. Assuming that there is no volumetric source of
non-condensable gases, i.e., Si = 0 for i = 1, . . . , NNCG, the vapor mixture equation is
simply the following:

∂αvρvA

∂t
+
∂αvρvuvA

∂x
= Sv,0A . (65)

This equation replaces the single vapor equation, given by Equation (57). With the addition
of the NCGs, there are NNCG new unknowns in the system: ξv,i for i = 1, . . . , NNCG
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and thus NNCG new equations are required. The associated equations will be the species
equations for each NCG:

∂αvξv,iρvA

∂t
+
∂αvξv,iρvuvA

∂x
= −∂Jv,i

∂x
, (66)

where the diffusive flux is
Jv,i = −αvρvDv,i

∂ξv,i
∂x

A . (67)

4.1 Spatial Discretization and Boundary Conditions

This section describes how Equation (66) is spatially discretized. Note that Equation (65)
appears in the PDE system as well, but it looks the same as its no-NCG version, so it does
not need discussion.

The time derivative, advection, and volumetric source terms of Equation (66) are dis-
cretized just as the corresponding terms in the vapor mixture mass equation, so the only
term that needs to be discussed is the the new term, containing the diffusion flux. For the
continuous Galerkin finite element, the term is integrated by parts:(

∂Jv,m
∂x

, ϕi

)
Ω

= −
(
Jv,m ,

∂ϕi
∂x

)
Ω

+ 〈Jv,m , ϕinx〉Γ . (68)

The boundary term is usually evaluated according to boundary conditions, but here an
approximation is made to avoid these complications: the diffusive flux at the boundary is
assumed to be zero. Thus,(

∂Jv,m
∂x

, ϕi

)
Ω

= −
(
Jv,m ,

∂ϕi
∂x

)
Ω

. (69)

Note that this is not an approximation for wall boundary conditions, only for inlets and
outlets.

For finite volume discretization, the diffusion term is integrated over the volume, lead-
ing to the following: ∫

Vi

∂Jv,m
∂x

dV = Jv,m,i+1/2 − Jv,m,i−1/2 , (70)

where again, the diffusive flux is assumed to be zero if it corresponds to a boundary edge.
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